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An attempt is made in this paper to indicate the impact that one small part of Sir Lawrence Bragg's 
gross contributions have had upon crystallography during his lifetime up to the age of eighty. The 
small part referred to is the growing field of optical computation. Since this paper is partly for the 
enlightenment of the reader as well as a salute to history, descriptions of five basic optical operations 
are given: I, addition; II, multiplication; III, reciprocation; IV, convolution and V, diffraction. The 
role of Bragg and his co-workers is woven into each description. Finally as an extrapolation, a further 
process is described: VI, inverse imaging. 

In a Festschrift in honor of a man having Sir Lawrence 
Bragg's long list of achievements, dating from the very 
beginning of X-ray diffraction to the present, there 
might be at least one report, giving in a brief manner, 
the high points of his scientific career; but it would 
require a large volume to do the subject justice in 
detail. It seems appropriate, however, to trace just one 
thread through his contributions, namely, optical 
computation. 

This discussion is divided into six parts: I, addition; 
II, multiplication; III, reciprocation; IV, convolution; 
V, diffraction and VI, inverse imaging. All of these are 
basic mathematical processes capable of being per- 
formed by means of optics. The first five are closely 
associated with the works and inspirations of Bragg 
and his associates, while the sixth is really an extrapo- 
lation to illustrate what such pioneering work can lead 
to. 

For the sake of brevity in symbolism throughout 
this report, the term Q(xy) is used to designate the 
density, ~o as a function of the distances x and y in the 
pattern, regardless of whether or not the pattern be- 
longs to a repeating array such as is found in the pro- 
jection of a crystal structure; the termf(hk) designates 
the transform of one unit, whether it be one atom, a 
molecule, the content of an isolated unit cell, or any 
design or figure such as a portrait or a swastika [where 
h and k need not be restricted to integers (Wrinch, 
1946)]; and the term F(hk) designates the Fourier 
transform or structure factor of any array of designs 
that are positioned in a crystallographic manner (nat- 
urally h and k have only integral values). 

I. Addition 

Optical addition is illustrated schematically in Fig. l(a), 
where 01 and 02 are evenly illuminated areas having 
designs on them such that the intensity of light reflected 
from them (or transmitted through them) is Ii(xy) and 
I2(xy), proportional to Ol(xy) and Q2(xy) respectively. 
The lenses, L1 and Lz bring the images of O1 and O2 
upon the screen Se in register, with an intensity distri- 

bution I12(xy) on Se proportional to the sum, Ii(xy)+ 
I2(xy), or O12(xy)=Q1(xy)+Qz(xy). Any number, N, of 
patterns, Ox, O2 . . .  O j . . . O N  can be added in this 
way. Or, if one wishes, one can use just one single lens 
and expose the O7 patterns one at a time in succession 
and the resulting multiple exposure of a photographic 
film placed at Se can be developed to reveal the final 
sum. 

The method of successive exposures was used by 
Bragg (1939) for the synthesis of Fourier terms of the 
kind, F(hk) cos 2~z(hx +ky) and F(hk) sin 2rffhx +ky) 
where the O7 patterns were photographic films whose 
transparencies Tj(xy) were proportional to cos 2rc(hx + 
ky) or sin 2rc(hx+ky) and the times of exposure were 
proportional to F(hk). Thus Fourier summations of 
crystal structures were made. 

The enthusiasm stimulated by this development by 
Bragg is indicated by the large number of related papers 
that followed. Huggins (1944) proceeded to put the 
method on a commercial basis, thus making available 
to the public the 'Bragg-Huggins Masks'. Wooley & 
McLachlan (1951) using the simultaneous exposure 
method shown in Fig. l(a) developed what they called 
the 'multiple projector' (without lenses). Later Howell, 
Christensen & McLachlan (1951) produced masks that 
were more accurately reproducible photographically, 
and Howell & McLachlan (1955) built a table model 
projector with a Polaroid camera attached. Von Eller 
(1951) using opaque metallic strips that were rotatable 
and having axial motion (to change the size of their 
shadows) simulated masks, one at a time as they were 
needed during the summation. Von Eller's apparatus 
was produced commercially and was very successful. 
Similarly McLachlan (1957) built a 'synthesizer for 
triangular wave functions' using moir6 patterns, which 
also simulated the masks O7 as needed during the 
synthesis. 

Realizing that light is not the only medium that can 
be added in the Bragg manner, two other sets of au- 
thors came forward with new ideas. McLachlan & 
Champaygne (1946) used sand patterns to simulate the 
cos 2rc(hx+ky) terms and Pepinsky (1947) developed a 
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very usable machine (XRAC) using patterns of elec- 
trons striking an electroscope tube. 

These means of simple addition are incorporated in 
other more complex processes which are to follow, but 
before going on, we should point out that a more 
general form of addition, recognized as integration is 
shown in Fig. l(b). Here, all the points of the object 
patterns at O are to be added together through the 
action of the lens L which concentrates the radiation 
from O upon an area smaller than the face of the pho- 
tocell PS. 

It is interesting that if the patterns O1 and 02 in Fig. 
l(a) were Patterson maps, and if they were shifted out 
of register by an amount uv corresponding to a through 
center vector on the Patterson map, a 'shifted Patterson 
sum' would be visible on the screen Se. The literature 
on shifted Patterson maps in general, including the 
shifted Patterson sum, the shifted Patterson product, 
minimum function, vector convergence, image seeking 
function, etc. has been adequately recorded by Buerger 
(1959) and Lipson & Cochran (1953). 

H. Multiplication 

Optical multiplication is shown schematically in Fig. 
2(a) where parallel light striking the transparent film, 
O1 having transparency Tl(xy)~-O(xy) and on through 
film 02 having transparency T2(xy)~-O(xy), is brought 
to focus (through the lens L2) upon the screen Sc. The 
image on Sc will have a brightness B(xy) proportional 
to the product Tl(xy) T2(xy)"~Ol(xy) 02(xy). A simpler 
way to get optical multiplication is shown in Fig. 2(b), 
where the films O1 and 02 are in contact with one 
another and with the screen Sc. 

If for example O1 and 02 in Fig. 2 were identical and 
represented the electron density O(xy) in a unit cell of a 
crystal, then a 'squared' structure would be visible at 
So. The squared structure we have in mind is the one 
mentioned by Sayre (1952) in his paper on the squaring 
method of sign determination. Or if identical weighted 

reciprocal lattices, F(hk) were at O 1 and 02, then 
[F(hk)l 2 would appear on So. While both of these illus- 
trations of multiplication might be considered trivial, 
one that is not trivial is the suggestion that if two iden- 
tical Patterson maps A(uv) were placed at O1 and 02 
and shifted with respect to one another an amount 
equal to a through center vector u~jv~j, then at the 
screen Sc would be seen a shifted Patterson product 
(see references in Buerger, 1959). 

Bragg & Lipson (1936) reported on some longhand 
computations in which optical multiplication could 
have been used. They computed maps for such terms as 
cos 2nhx cos 2nky, cos 2nhx sin 2nky, etc. which are 
really products of the Bragg masks which he developed 
three years later as mentioned above (Bragg, 1939). As 
Bragg points out, not many of these product maps need 
be computed. This means that if transparent masks of 
these product maps were used, not so many would have 
been required for the Fourier synthesis. However, this 
first paper by Bragg (Bragg & Lipson, 1936) was a 
pioneer work which was later carried on and applied 
to molecules by Knott (1940) and other workers. Mole- 
cular transforms and transforms of point sets in general 
are elegantly treated in a monograph by Wrinch (1946). 

III. Reciprocation and division 

The procedure for finding the reciprocal of a pattern 
Q(xy), that is, finding a pattern whose density if R(xy)= 
1/Q(xy) is almost trivial from the standpoint of opera- 
tion, but is of significance for purposes to be discussed 
later. Fig. 3 shows a floodlight, FL, evenly illuminating 
a transparent pattern at O and a transparent film, TF 
in contact with it. The transparency, R(xy), of the film, 
TF, after development should be proportional to the 
reciprocal (1/T(xy)) of the film at O whose transparency 
is T(xy). This is because of the nature of the Hurter- 
Druffield curve (shown on page 151 of Goodman, 1968) 
which exhibits a straight line portion obeying the equa- 
tion relating density, D, and exposure, E 

1 
~ L 1 

(a) (b) ~ L PS 

Fig. 1. (a) Showing optical addition by the superposition of images and (b) showing optical integration with a lens and photocell. 

L1 01 02 l-2 Sc O~ 02 
Fig.2. (a) Showing optical multiplication using lenses and, (b) showing multiplication b,~ contact printing of two patterns. 
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o r  

Letting 

D -  7 log E 

I0 
IOg-l~r = y log let. 

Ie = IoT(xy), Itr = Io R(xy) 

and solving for R(xy): 

I0 R(xy) - 
[lot T(xy)]r " 

When 
7=1 

R(xy )=  K / r ( x y )  . 

With proper care one should be able to use photo- 
graphic transparencies to obtain maps of 1/Q(xy), 
1/f(hk) or 1/F(hk) which we will use in a later section of 
this paper to get inverse images. 

This reciprocation procedure can be used in prep- 
aration for the process of carrying out optical divi- 
sion. Since the division of one number by another is 
equivalent to multiplying one of the numbers by the 
reciprocal of the other, one can place a transparency 
T(xy) at O1 in Fig. 2 and the transparent negative of 
Tz(xy) at O2 and get T1(xy)/Tz(xy) on screen So. When 
Ta(xy)= Tz(xy), a uniform field should be obtained. 
But a popular stunt by professional as well as amateur 
photographers is to shift the two films slightly out of 
register to get a bas-relief kind of picture. 

IV. Convolutions 

For future reference we write here the mathematical 
expression for the cross convolution process in two 
dimensions, 

is:s: A(uv) = ~1- O(xY) O'(x + u, y + v) dxdy 

which becomes an auto- or self-convolution when 
o~(xy)=Q'(xy), familiarly recognized as a Patterson 
map. It involves the basic operations of multiplication 

OTF 
Fig. 3. Optical reciprocation by contact printing e ,  a trans- 

parent negative film. 

and integration [(see Fig. 2(a) and (b)]. Fig. 4(a) shows 
at O1 a map or film whose scattering power or trans- 
parency is proportional to Q(xy), and at 02 at one-half 
scale, a film whose transparency is proportional to 
Ql(xy). The convolution map shows on the screen So. 

The first synthetic map to be produced optically was 
made by Robertson (1943) who used an arrangement of 
separate electric lights at O1 to represent the planar 
configuration of atoms and holes similarly arranged in 
an opaque sheet at 02. Bragg (1944) introduced a lens 
as shown in Fig.4(b) which avoided the necessity of 
reducing the scale at 02. Vand (1944) made two other 
modifications using mirrors which enabled one to 
produce Patterson maps with only one copy of the 
Q(xy) map. Also Hftgg (1944) and Booth & Wrinch 
(1946) contributed to the development of synthetic 
Patterson maps, while Philips & McLachlan (1954) 
considered the Robertson method in relation to other 
operations. 

The general application of convolutions is much 
broader in scope than is generally realized. For 
example, the ordinary pin-hole camera is really a 
means of performing a convolution of an object O1 
against a pin-hole at 02 [Fig.4(a)] and in which the 
resolution of the picture at C is a function of the size 
of the pin-hole, the distance from 02 to C, and the 
wavelength of the light used. The multiple pin-hole 
camera of Bragg (1944) also involved convolutions in 
a minor role. The shifted Patterson sum need not be 
done by straight addition as described earlier, but can 
be simulated reasonably accurately by placing an 
A(uv) as Patterson map at O1 [Fig.4(a)] and two pin- 
holes at Oz spaced in accord with the desired shift. 

Remembering that the maps O1 and 02 need not 
always represent electron densities, Q(xy), but can also 
represent Fourier transforms f(hk) and F(hk), one can 
think of other uses for them. For example, they could 
be used to compute F(H') F ( H ' -  H) which Sayre (1952) 
called 'inner products'. Also, the concept of convolu- 
tions is not confined to crystallographic problems. For 
example, McLachlan (1962) proposed the use of optical 
convolutions as a means of pattern recognition, based 
upon the fact that two identical patterns (whether they 
be numerals, letters, portraits, fingerprints, etc.) give 
self-convolutions which have a pronounced peak at 
the center, while unlike patterns placed at O1 and Oz of 
Fig. 4(a) produce no such central peak. It will be shown 
in the last section of this paper that the concept of 
inverse images, derived through optical means is an 
even better approach to the growing and urgent 
problems of pattern recognition and retrieval. 

07 O~ Sc O~ 02 ".L Sc 

Fig.4. (a) Optical convoluting without lenses (Robertson, 1943) and, (b) using a lens (Bragg, 1944). 
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V. Optical diffraction 

Although spectroscopists have been applying diffrac- 
tion phenomena for many decades to determine the 
intensities of the various wavelengths of radiation 
using a known pattern for their diffractor, the converse, 
i.e. the use of radiations of a known wavelength to 
analyze the diffracting object, is much newer. Before 
any Fourier transforms had been computed or pur- 
posely simulated, Abbe (1873) showed the role that 
diffraction plays in image formation by lenses. Many 
papers have been written (see references in Wrinch, 
1946; Taylor & Lipson, 1965; and Lipson & Cochran, 
1953) on the computation of Fourier transforms of 
atoms, molecules and projected crystal unit cells. 
According to Taylor & Lipson (1965, page 2) the pro- 
pagandist (chiefly optical) for simulating X-ray diffrac- 
tion effects 'was undoubtedly W.L.Bragg,'  starting 
with a paper in Nature (Bragg, 1939). 

It is of interest to point out that besides the book by 
Wrinch (1946) on computation methods and that by 
Taylor & Lipson (1965)* on optical methods, there is 
a newer book by Goodman (1968) devoted strictly to 
Fourier optics showing the viewpoint of physicists who 
are specialists in optics. 

There have been two types of optical diffractometers 
put to use under different modifications by the various 
authors. One type is based entirely on lenses for 
focusing purposes and the other uses a mirror. Both of 
these have been described in the book by Taylor & 
Lipson (1965) with adequate detail for anyone to build 
a diffractometer for himself from their descriptions. 
The lens focusing optical diffractometer is shown 
briefly in Fig. 5, where light from the source S is con- 
centrated on a pin-hole, PH, by the lens, L. The pin- 
hole, acting as a coherent source, illuminates the pat- 
tern, O, after being collimated by the lens, L2, and the 
modulated radiation from O is brought to focus on the 
plane D by means of the lens L3. If a transparent pat- 
tern, O(xy) is placed at Oj then the screen D reveals a 
diffraction pattern, F2(hk) of Q(xy). For early sugges- 
tions, see Ewald (1940) and Knott (1940). 

When the Fourier transform of an atom is desired, 
the ¢(xy) or o(r) of the atom is usually represented as a 
round hole in a thin opaque sheet; or if the O(xy) of a 
single unit cell of a crystal, or a single molecule is 
desired, the holes in the sheet at O are arranged ac- 
cording to the arrangement of atoms in the unit cell or 

* Taylor & Lipson's book alone has references to eleven of 
Bragg's papers. 

molecule. To get the phases or signs off(hk) inf2(hk), 
one can apply methods suggested on pages 77 to 79 of 
Taylor & Lipson (1965) or one can give considerations 
regarding symmetry according to Wilson (1942) and 
others. When the diffraction from a projected crystal 
is desired, a two-dimensional array of O(xy) for a unit 
cell can be produced using the 'fly's eye' (Bragg, 1944; 
Crowfoot, Bunn, Rogers-Low & Turner-Jones, 1945) 
and the IF(hk)l 2 pattern appears at D in Fig. 5 showing 
only integral values ofh and k. These methods are quick 
ways of checking trial structures. 

Remembering that the diffraction from a diffraction 
pattern produces an image of the original pattern, one 
can see that a transformf(hk) or F(hk) can be placed at 
O in Fig. 5 and a Q(xy) will appear at D. Bragg (1939) 
produced a projected image of the structure of the 
mineral diopside in this way using thin disks over the 
holes in O (Fig.5) to regulate the phases by wave 
retardation. Buerger (1950) used tiltable mica discs 
over the holes. These Fourier syntheses, according to 
the reasoning of Abbe (1873) and Goodman (1968) are 
applicable to any kind of a pattern whatsoever. 

VI. Inverse images 

As far as is known, the first introduction to the concept 
of inverse images was by McLachlan (1969). It can be 
defined by reference to Fig.4(a) which is a set up for 
cross convolutions. It is postulated that, for each and 
every pattern O(xy) that is placed at O1 in Fig. 4(a) there 
can be found a pattern o-l(xy) to be placed at 02 which 
when convoluted against the pattern at O1, will produce 
upon the screen Sc, one single point at the center. Also, 
if there are a number of identical patterns on O1, then 
one inverse image of that pattern placed on 02 will 
convolute to produce an equal number of points on 
C. Or, if the structure of a unit cell were placed on O1 
and an inverse image of an atom were placed on 02, 
then a point atom structure would appear on C. 

In the original paper, McLachlan treated the prob- 
lem as a matrix problem. An imaginary one-dimensio- 
nal cell containing six Gaussian atoms was divided into 
eight equal parts and a histogram P(n) was drawn in. 
Then a histogram of a single Gaussian atom was simi- 
larly drawn. The inverse of an eight by eight matrix had 
to be solved by computer to give the histogram of the 
'inverse Gaussian atom'. A numerical convolution of 
the histogram of the inverse Gaussian atom was per- 
formed against the six atom histogram of the cell, the 
results of which gave a highly satisfactory positioning 
of the centers of the six Gaussian atoms in the original 

L20 L3 D 
Fig. 5. Optical diffraction using lenses. 
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cell. This resolution of the atomic positions operated 
in spite of the fact that there was only one maximum 
in the original O(xy) and it was not at an atomic posi- 
tion. 

In order to lead up to optical methods for studying 
inverse images, let us look at the well-known cross 
convolution equation: 

l !a fbo Q(Xy)Q'(x-k u, y -b v) dxdy a(uv)= A 0 

= 1 l~,ZF(hk) F'(hk) exp - 2rc(hu +kv)] 
Ahk 

(1) 

where F(hk) is the Fourier transform of O(xy) and 
Fl(hk) is the Fourier transform of Qa(xy). In compari- 
son, the people who get point atoms in the structure 
by dividing F(hk) byj'(kh) (see Harker & Kasper, 1948) 
use an equation of the form: 

! ~212F(hk) 1 H(xy) = A h k -f-(14k.) exp [ -  2rci(hx + ky)]. (2) 

A comparison of equations (I) and (2) reveals that 
1/f(hk) is the Fourier transform of some structure 
01(xy) and that the structure H(xy) of point atoms is 
inadvertently a cross convolution B(uv) of the structure 
Q(xy) and some other structure Q~(xy) which in turn is 
the structure of an inverse atom, Q-l(xy). The structure 
of the inverse atom is then: 

1 1 
l~Ig exp [ -  2rci(hx + ky)] 

P- ' (xy)= A h k f-(hk) 

According to the discussion of reciprocation in §III 
above, the term 1/f(hk) can be obtained f romf(hk)  by 
making a transparent negative off(hk)  using film with 
matching 7's. This should be useful in sharpening 
Patterson projections, in fact, in the original paper it 
was shown that it resolves atoms that are totally hidden 
by overlaps. 

Much discussion could be given to this subject, but 
at this time, it is best to only state that, at The Ohio 
State University, optical apparatus is being built to 
carry on investigations with atoms, molecules and 
patterns in general for help in problem in informations 
retrieval. Beyond this single projected suggestion, it is 
very difficult to predict the many future uses that opti- 

cal computations will be put to in aid of the various 
branches of science, based on the work of pioneers such 
as Bragg and his co-workers. 
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